Thông tin tài liệu


Nhan đề : 
Deep unfolding multi-scale regularizer network for image denoising
Tác giả : 
Jingzhao, Xu
Mengke, Yuan
Dong-Ming, Yan
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Existing deep unfolding methods unroll an optimization algorithm with a fixed number of steps, and utilize convolutional neural networks (CNNs) to learn data-driven priors. However, their performance is limited for two main reasons. Firstly, priors learned in deep feature space need to be converted to the image space at each iteration step, which limits the depth of CNNs and prevents CNNs from exploiting contextual information. Secondly, existing methods only learn deep priors at the single full-resolution scale, so ignore the benefits of multi-scale context in dealing with high level noise. To address these issues, we explicitly consider the image denoising process in the deep feature space and propose the deep unfolding multi-scale regularizer network (DUMRN) for image denoising
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s41095-022-0277-5
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7311
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

29

XEM TOÀN VĂN

6

Danh sách tệp tin đính kèm:

Ảnh bìa
  • s41095-022-0277-5.pdf
      Restricted Access
    • Dung lượng : 9,87 MB

    • Định dạng : Adobe PDF