Thông tin tài liệu
Nhan đề : |
Noise-resistant and scalable collective preference learning via ranked voting in swarm robotics |
Tác giả : |
Qihao, Shan Sanaz, Mostaghim |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
Swarm robotics studies how to use large groups of cooperating robots to perform designated tasks. Given the need for scalability, individual members of the swarm usually have only limited sensory capabilities, which can be unreliable in noisy situations. One way to address this shortcoming is via collective decision-making, and utilizing peer-to-peer local interactions to enhance the behavioral performances of the whole swarm of intelligent agents. In this paper, we address a collective preference learning scenario, where agents seek to rank a series of given sites according to a preference order. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s11721-022-00214-z https://dlib.phenikaa-uni.edu.vn/handle/PNK/7315 |
Bộ sưu tập |
OER - Công nghệ thông tin |
XEM MÔ TẢ
16
XEM TOÀN VĂN
8
Danh sách tệp tin đính kèm: