Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaged, Magdy-
dc.contributor.authorFayed F. M., Ghaleb-
dc.contributor.authorDawlat A. El A., Mohamed-
dc.date.accessioned2023-03-30T04:02:23Z-
dc.date.available2023-03-30T04:02:23Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s11227-022-04976-5-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7327-
dc.descriptionCC BYvi
dc.description.abstractFrequent itemset mining (FIM) is the crucial task in mining association rules that finds all frequent k-itemsets in the transaction dataset from which all association rules are extracted. In the big-data era, the datasets are huge and rapidly expanding, so adding new transactions as time advances results in periodic changes in correlations and frequent itemsets present in the dataset. Re-mining the updated dataset is impractical and costly. This problem is solved via incremental frequent itemset mining.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectFIMvi
dc.subjectvia incremental frequent itemset miningvi
dc.titleCC-IFIM: an efficient approach for incremental frequent itemset mining based on closed candidatesvi
dc.typeBookvi
Appears in Collections
OER - Công nghệ thông tin

Files in This Item: