Item Infomation
Title: |
CC-IFIM: an efficient approach for incremental frequent itemset mining based on closed candidates |
Authors: |
Maged, Magdy Fayed F. M., Ghaleb Dawlat A. El A., Mohamed |
Issue Date: |
2023 |
Publisher: |
Springer |
Abstract: |
Frequent itemset mining (FIM) is the crucial task in mining association rules that finds all frequent k-itemsets in the transaction dataset from which all association rules are extracted. In the big-data era, the datasets are huge and rapidly expanding, so adding new transactions as time advances results in periodic changes in correlations and frequent itemsets present in the dataset. Re-mining the updated dataset is impractical and costly. This problem is solved via incremental frequent itemset mining. |
Description: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s11227-022-04976-5 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7327 |
Appears in Collections |
OER - Công nghệ thông tin |
ABSTRACTS VIEWS
17
FULLTEXT VIEWS
6
Files in This Item: