Thông tin tài liệu


Nhan đề : 
Deep variational models for collaborative filtering-based recommender systems
Tác giả : 
Jesús, Bobadilla
Fernando, Ortega
Abraham, Gutiérrez
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Deep learning provides accurate collaborative filtering models to improve recommender system results. Deep matrix factorization and their related collaborative neural networks are the state of the art in the field; nevertheless, both models lack the necessary stochasticity to create the robust, continuous, and structured latent spaces that variational autoencoders exhibit. On the other hand, data augmentation through variational autoencoder does not provide accurate results in the collaborative filtering field due to the high sparsity of recommender systems.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s00521-022-08088-2
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7372
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

38

XEM TOÀN VĂN

64

Danh sách tệp tin đính kèm: