Thông tin tài liệu
Nhan đề : |
Deep variational models for collaborative filtering-based recommender systems |
Tác giả : |
Jesús, Bobadilla Fernando, Ortega Abraham, Gutiérrez |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
Deep learning provides accurate collaborative filtering models to improve recommender system results. Deep matrix factorization and their related collaborative neural networks are the state of the art in the field; nevertheless, both models lack the necessary stochasticity to create the robust, continuous, and structured latent spaces that variational autoencoders exhibit. On the other hand, data augmentation through variational autoencoder does not provide accurate results in the collaborative filtering field due to the high sparsity of recommender systems. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s00521-022-08088-2 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7372 |
Bộ sưu tập |
OER - Công nghệ thông tin |
XEM MÔ TẢ
38
XEM TOÀN VĂN
64
Danh sách tệp tin đính kèm: