Thông tin tài liệu
Nhan đề : |
Hostility measure for multi-level study of data complexity |
Tác giả : |
Carmen, Lancho Isaac Martín De Diego, Diego Marina, Cuesta |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
omplexity measures aim to characterize the underlying complexity of supervised data. These measures tackle factors hindering the performance of Machine Learning (ML) classifiers like overlap, density, linearity, etc. The state-of-the-art has mainly focused on the dataset perspective of complexity, i.e., offering an estimation of the complexity of the whole dataset. Recently, the instance perspective has also been addressed. In this paper, the hostility measure, a complexity measure offering a multi-level (instance, class, and dataset) perspective of data complexity is proposed. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s10489-022-03793-w https://dlib.phenikaa-uni.edu.vn/handle/PNK/7392 |
Bộ sưu tập |
OER - Công nghệ thông tin |
XEM MÔ TẢ
19
XEM TOÀN VĂN
44
Danh sách tệp tin đính kèm: