Thông tin tài liệu


Nhan đề : 
Hostility measure for multi-level study of data complexity
Tác giả : 
Carmen, Lancho
Isaac Martín De Diego, Diego
Marina, Cuesta
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
omplexity measures aim to characterize the underlying complexity of supervised data. These measures tackle factors hindering the performance of Machine Learning (ML) classifiers like overlap, density, linearity, etc. The state-of-the-art has mainly focused on the dataset perspective of complexity, i.e., offering an estimation of the complexity of the whole dataset. Recently, the instance perspective has also been addressed. In this paper, the hostility measure, a complexity measure offering a multi-level (instance, class, and dataset) perspective of data complexity is proposed.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s10489-022-03793-w
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7392
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

19

XEM TOÀN VĂN

44

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Hostility measure for multi-level study of data complexity-2023.pdf
      Restricted Access
    • Dung lượng : 4,06 MB

    • Định dạng : Adobe PDF