Thông tin tài liệu


Nhan đề : 
Learning semantic ambiguities for zero-shot learning
Tác giả : 
Celina, Hanouti
Hervé Le, Borgne
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Zero-shot learning (ZSL) aims at recognizing classes for which no visual sample is available at training time. To address this issue, one can rely on a semantic description of each class. A typical ZSL model learns a mapping between the visual samples of seen classes and the corresponding semantic descriptions, in order to do the same on unseen classes at test time. State of the art approaches rely on generative models that synthesize visual features from the prototype of a class, such that a classifier can then be learned in a supervised manner. However, these approaches are usually biased towards seen classes whose visual instances are the only one that can be matched to a given class prototype.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s11042-023-14877-1
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7403
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

34

XEM TOÀN VĂN

26

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Learning semantic ambiguities for zero-shot learning-2023.pdf
      Restricted Access
    • Dung lượng : 1,45 MB

    • Định dạng : Adobe PDF