Thông tin tài liệu
| Nhan đề : |
| On unique recovery of finite-valued integer signals and admissible lattices of sparse hypercubes |
| Tác giả : |
| Abdullah, Alasmari Iskander, Aliev |
| Năm xuất bản : |
| 2022 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| The paper considers the problem of unique recovery of sparse finite-valued integer signals using a single linear integer measurement. For l-sparse signals in Zn, 2l<n, with absolute entries bounded by r, we construct an 1×n measurement matrix with maximum absolute entry Δ=O(r2l−1). Here the implicit constant depends on l and n and the exponent 2l−1 is optimal. Additionally, we show that, in the above setting, a single measurement can be replaced by several measurements with absolute entries sub-linear in Δ. The proofs make use of results on admissible (n−1)-dimensional integer lattices for m-sparse n-cubes that are of independent interest. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s11590-022-01927-0 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7409 |
| Bộ sưu tập |
| OER - Khoa học Tự nhiên |
XEM MÔ TẢ
130
XEM TOÀN VĂN
64
Danh sách tệp tin đính kèm:
