Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorTaiki, Shibata-
dc.contributor.authorKenichi, Shimizu-
dc.date.accessioned2023-04-03T02:17:23Z-
dc.date.available2023-04-03T02:17:23Z-
dc.date.issued2021-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10468-021-10102-5-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7410-
dc.descriptionCC BYvi
dc.description.abstractWe organize the modified trace theory with the use of the Nakayama functor of finite abelian categories. For a linear right exact functor Σ on a finite abelian category M, we introduce the notion of a Σ-twisted trace on the class Proj(M) of projective objects of M. In our framework, there is a one-to-one correspondence between the set of Σ-twisted traces on Proj(M) and the set of natural transformations from Σ to the Nakayama functor of M. Non-degeneracy and compatibility with the module structure (when M is a module category over a finite tensor category) of a Σ-twisted trace can be written down in terms of the corresponding natural transformation.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectProj(M)vi
dc.subjectNakayama functorvi
dc.titleModified Traces and the Nakayama Functorvi
dc.typeBookvi
Appears in Collections
OER - Khoa học Tự nhiên

Files in This Item:

Thumbnail
  • Modified Traces and the Nakayama Functor-2023.pdf
      Restricted Access
    • Size : 975,75 kB

    • Format : Adobe PDF