Item Infomation
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Taiki, Shibata | - |
dc.contributor.author | Kenichi, Shimizu | - |
dc.date.accessioned | 2023-04-03T02:17:23Z | - |
dc.date.available | 2023-04-03T02:17:23Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s10468-021-10102-5 | - |
dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/7410 | - |
dc.description | CC BY | vi |
dc.description.abstract | We organize the modified trace theory with the use of the Nakayama functor of finite abelian categories. For a linear right exact functor Σ on a finite abelian category M, we introduce the notion of a Σ-twisted trace on the class Proj(M) of projective objects of M. In our framework, there is a one-to-one correspondence between the set of Σ-twisted traces on Proj(M) and the set of natural transformations from Σ to the Nakayama functor of M. Non-degeneracy and compatibility with the module structure (when M is a module category over a finite tensor category) of a Σ-twisted trace can be written down in terms of the corresponding natural transformation. | vi |
dc.language.iso | en | vi |
dc.publisher | Springer | vi |
dc.subject | Proj(M) | vi |
dc.subject | Nakayama functor | vi |
dc.title | Modified Traces and the Nakayama Functor | vi |
dc.type | Book | vi |
Appears in Collections | ||
OER - Khoa học Tự nhiên |
Files in This Item: