Thông tin tài liệu
| Nhan đề : |
| Modified Traces and the Nakayama Functor |
| Tác giả : |
| Taiki, Shibata Kenichi, Shimizu |
| Năm xuất bản : |
| 2021 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| We organize the modified trace theory with the use of the Nakayama functor of finite abelian categories. For a linear right exact functor Σ on a finite abelian category M, we introduce the notion of a Σ-twisted trace on the class Proj(M) of projective objects of M. In our framework, there is a one-to-one correspondence between the set of Σ-twisted traces on Proj(M) and the set of natural transformations from Σ to the Nakayama functor of M. Non-degeneracy and compatibility with the module structure (when M is a module category over a finite tensor category) of a Σ-twisted trace can be written down in terms of the corresponding natural transformation. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s10468-021-10102-5 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7410 |
| Bộ sưu tập |
| OER - Khoa học Tự nhiên |
XEM MÔ TẢ
96
XEM TOÀN VĂN
78
Danh sách tệp tin đính kèm:
