Thông tin tài liệu
| Nhan đề : |
| Adversarial classification via distributional robustness with Wasserstein ambiguity |
| Tác giả : |
| Nam Ho-, Nguyen Stephen J., Wright |
| Năm xuất bản : |
| 2022 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| We study a model for adversarial classification based on distributionally robust chance constraints. We show that under Wasserstein ambiguity, the model aims to minimize the conditional value-at-risk of the distance to misclassification, and we explore links to adversarial classification models proposed earlier and to maximum-margin classifiers. We also provide a reformulation of the distributionally robust model for linear classification, and show it is equivalent to minimizing a regularized ramp loss objective. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s10107-022-01796-6 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7460 |
| Bộ sưu tập |
| OER - Khoa học Tự nhiên |
XEM MÔ TẢ
125
XEM TOÀN VĂN
42
Danh sách tệp tin đính kèm:
