Thông tin tài liệu


Nhan đề : 
Adversarial classification via distributional robustness with Wasserstein ambiguity
Tác giả : 
Nam Ho-, Nguyen
Stephen J., Wright
Năm xuất bản : 
2022
Nhà xuất bản : 
Springer
Tóm tắt : 
We study a model for adversarial classification based on distributionally robust chance constraints. We show that under Wasserstein ambiguity, the model aims to minimize the conditional value-at-risk of the distance to misclassification, and we explore links to adversarial classification models proposed earlier and to maximum-margin classifiers. We also provide a reformulation of the distributionally robust model for linear classification, and show it is equivalent to minimizing a regularized ramp loss objective.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s10107-022-01796-6
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7460
Bộ sưu tập
OER - Khoa học Tự nhiên
XEM MÔ TẢ

9

XEM TOÀN VĂN

6

Danh sách tệp tin đính kèm: