Thông tin tài liệu
Nhan đề : |
Adversarial classification via distributional robustness with Wasserstein ambiguity |
Tác giả : |
Nam Ho-, Nguyen Stephen J., Wright |
Năm xuất bản : |
2022 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
We study a model for adversarial classification based on distributionally robust chance constraints. We show that under Wasserstein ambiguity, the model aims to minimize the conditional value-at-risk of the distance to misclassification, and we explore links to adversarial classification models proposed earlier and to maximum-margin classifiers. We also provide a reformulation of the distributionally robust model for linear classification, and show it is equivalent to minimizing a regularized ramp loss objective. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s10107-022-01796-6 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7460 |
Bộ sưu tập |
OER - Khoa học Tự nhiên |
XEM MÔ TẢ
9
XEM TOÀN VĂN
6
Danh sách tệp tin đính kèm: