Thông tin tài liệu
Nhan đề : |
A remake of Bourgain–Brezis–Mironescu characterization of Sobolev spaces |
Tác giả : |
Guy Fabrice Foghem, Gounoue |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
We introduce a large class of concentrated p-Lévy integrable functions approximating the unity, which serves as the core tool from which we provide a nonlocal characterization of the Sobolev spaces and the space of functions of bounded variation via nonlocal energies forms. It turns out that this nonlocal characterization is a necessary and sufficient criterion to define Sobolev spaces on domains satisfying the extension property. We also examine the general case where the extension property does not necessarily hold. In the latter case we establish weak convergence of the nonlocal Radon measures involved to the local Radon measures induced by the distributional gradient. |
Mô tả: |
Cc BY |
URI: |
https://link.springer.com/article/10.1007/s42985-023-00232-4 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7526 |
Bộ sưu tập |
OER - Khoa học Tự nhiên |
XEM MÔ TẢ
68
XEM TOÀN VĂN
92
Danh sách tệp tin đính kèm: