Thông tin tài liệu
| Nhan đề : |
| A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolation |
| Tác giả : |
| Martin W., Hess Annalisa, Quaini Gianluigi, Rozza |
| Năm xuất bản : |
| 2023 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-Bénard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e., medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behavior. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s10444-023-10016-4 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7605 |
| Bộ sưu tập |
| OER - Khoa học Tự nhiên |
XEM MÔ TẢ
168
XEM TOÀN VĂN
184
Danh sách tệp tin đính kèm:
