Thông tin tài liệu
| Nhan đề : |
| Computing torsion subgroups of Jacobians of hyperelliptic curves of genus 3 |
| Tác giả : |
| J. Steffen, Müller Berno, Reitsma |
| Năm xuất bản : |
| 2023 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| We introduce an algorithm to compute the structure of the rational torsion subgroup of the Jacobian of a hyperelliptic curve of genus 3 over the rationals. We apply a Magma implementation of our algorithm to a database of curves with low discriminant due to Sutherland as well as a list of curves with small coefficients. In the process, we find several torsion structures not previously described in the literature. The algorithm is a generalisation of an algorithm for genus 2 due to Stoll, which we extend to abelian varieties satisfying certain conditions. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s40993-023-00429-x https://dlib.phenikaa-uni.edu.vn/handle/PNK/7619 |
| Bộ sưu tập |
| OER - Khoa học Tự nhiên |
XEM MÔ TẢ
113
XEM TOÀN VĂN
90
Danh sách tệp tin đính kèm:
