Thông tin tài liệu
Nhan đề : |
Efficient and generalizable tuning strategies for stochastic gradient MCMC |
Tác giả : |
Jeremie, Coullon Leah, South Christopher, Nemeth |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
Stochastic gradient Markov chain Monte Carlo (SGMCMC) is a popular class of algorithms for scalable Bayesian inference. However, these algorithms include hyperparameters such as step size or batch size that influence the accuracy of estimators based on the obtained posterior samples. As a result, these hyperparameters must be tuned by the practitioner and currently no principled and automated way to tune them exists. Standard Markov chain Monte Carlo tuning methods based on acceptance rates cannot be used for SGMCMC, thus requiring alternative tools and diagnostics. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s11222-023-10233-3 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7700 |
Bộ sưu tập |
OER - Công nghệ thông tin |
XEM MÔ TẢ
16
XEM TOÀN VĂN
88
Danh sách tệp tin đính kèm: