Thông tin tài liệu


Nhan đề : 
Development of a machine-learning-based method for early fault detection in photovoltaic systems
Tác giả : 
Stylianos, Voutsinas
Dimitrios, Karolidis
Ioannis, Voyiatzis
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
In the process of the decarbonization of energy production, the use of photovoltaic systems (PVS) is an increasing trend. In order to optimize the power generation, the fault detection and identification in PVS is significant. The purpose of this work is the study and implementation of such an algorithm, for the detection as many as faults arising on the DC side of a photovoltaic system. A machine learning technique was chosen. The dataset used to train the algorithm was based on a year’s worth of irradiance and temperature data, as well as data from the PV cell used. The method uses logistic regression with cross validation as a new approach to detect and identify faults in PVS.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1186/s44147-023-00200-0
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8068
Bộ sưu tập
OER - Kỹ thuật điện; Điện tử - Viễn thông
XEM MÔ TẢ

31

XEM TOÀN VĂN

62

Danh sách tệp tin đính kèm: