Thông tin tài liệu


Nhan đề : 
Machine learning for optical chemical multi-analyte imaging
Tác giả : 
Silvia E., Zieger
Klaus, Koren
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Simultaneous sensing of metabolic analytes such as pH and O2 is critical in complex and heterogeneous biological environments where analytes often are interrelated. However, measuring all target analytes at the same time and position is often challenging. A major challenge preventing further progress occurs when sensor signals cannot be directly correlated to analyte concentrations due to additional effects, overshadowing and complicating the actual correlations. In fields related to optical sensing, machine learning has already shown its potential to overcome these challenges by solving nested and multidimensional correlations. Hence, we want to apply machine learning models to fluorescence-based optical chemical sensors to facilitate simultaneous imaging of multiple analytes in 2D.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s00216-023-04678-8
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8206
Bộ sưu tập
OER - Khoa học Tự nhiên
XEM MÔ TẢ

21

XEM TOÀN VĂN

70

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Machine learning for optical chemical multi-analyte imaging-2023.pdf
      Restricted Access
    • Dung lượng : 2,68 MB

    • Định dạng : Adobe PDF