Item Infomation


Title: 
Density of states for fast embedding node-attributed graphs
Authors: 
Lingxiao, Zhao
Saurabh, Sawlani
Leman, Akoglu
Issue Date: 
2023
Publisher: 
Springer
Abstract: 
Given a node-attributed graph, how can we efficiently represent it with few numerical features that expressively reflect its topology and attribute information? We propose A-DOGE, for attributed DOS-based graph embedding, based on density of states (DOS, a.k.a. spectral density) to tackle this problem. A-DOGE is designed to fulfill a long desiderata of desirable characteristics. Most notably, it capitalizes on efficient approximation algorithms for DOS, that we extend to blend in node labels and attributes for the first time, making it fast and scalable for large attributed graphs and graph databases.
Description: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s10115-023-01836-3
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8239
Appears in Collections
OER - Công nghệ thông tin
ABSTRACTS VIEWS

26

FULLTEXT VIEWS

46

Files in This Item: