Thông tin tài liệu
Nhan đề : |
Density of states for fast embedding node-attributed graphs |
Tác giả : |
Lingxiao, Zhao Saurabh, Sawlani Leman, Akoglu |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
Given a node-attributed graph, how can we efficiently represent it with few numerical features that expressively reflect its topology and attribute information? We propose A-DOGE, for attributed DOS-based graph embedding, based on density of states (DOS, a.k.a. spectral density) to tackle this problem. A-DOGE is designed to fulfill a long desiderata of desirable characteristics. Most notably, it capitalizes on efficient approximation algorithms for DOS, that we extend to blend in node labels and attributes for the first time, making it fast and scalable for large attributed graphs and graph databases. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s10115-023-01836-3 https://dlib.phenikaa-uni.edu.vn/handle/PNK/8239 |
Bộ sưu tập |
OER - Công nghệ thông tin |
XEM MÔ TẢ
26
XEM TOÀN VĂN
38
Danh sách tệp tin đính kèm: