Thông tin tài liệu


Nhan đề : 
Density of states for fast embedding node-attributed graphs
Tác giả : 
Lingxiao, Zhao
Saurabh, Sawlani
Leman, Akoglu
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Given a node-attributed graph, how can we efficiently represent it with few numerical features that expressively reflect its topology and attribute information? We propose A-DOGE, for attributed DOS-based graph embedding, based on density of states (DOS, a.k.a. spectral density) to tackle this problem. A-DOGE is designed to fulfill a long desiderata of desirable characteristics. Most notably, it capitalizes on efficient approximation algorithms for DOS, that we extend to blend in node labels and attributes for the first time, making it fast and scalable for large attributed graphs and graph databases.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s10115-023-01836-3
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8239
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

26

XEM TOÀN VĂN

38

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Density of states for fast embedding node-attributed graphs-2023.pdf
      Restricted Access
    • Dung lượng : 3,3 MB

    • Định dạng : Adobe PDF