Thông tin tài liệu
| Nhan đề : |
| On the group of unit-valued polynomial functions |
| Tác giả : |
| Amr Ali, Al-Maktry |
| Năm xuất bản : |
| 2021 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| Let R be a finite commutative ring. The set F(R) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units F(R)× is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on R[x]/(x2)=R[α], the ring of dual numbers over R, and show that the group PR(R[α]) , consisting of those polynomial permutations of R[α] represented by polynomials in R[x], is embedded in a semidirect product of F(R)× by the group P(R) of polynomial permutations on R. In particular, when R=Fq , we prove that PFq(Fq[α])≅P(Fq)⋉θF(Fq)×. Furthermore, we count unit-valued polynomial functions on the ring of integers modulo pn and obtain canonical representations for these functions. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s00200-021-00510-x https://dlib.phenikaa-uni.edu.vn/handle/PNK/8312 |
| Bộ sưu tập |
| OER - Công nghệ thông tin |
XEM MÔ TẢ
87
XEM TOÀN VĂN
28
Danh sách tệp tin đính kèm:
