Item Infomation


Title: 
Joint leaf-refinement and ensemble pruning through L1 regularization
Authors: 
Sebastian, Buschjäger
Katharina, Morik
Issue Date: 
2023
Publisher: 
Springer
Abstract: 
Ensembles are among the state-of-the-art in many machine learning applications. With the ongoing integration of ML models into everyday life, e.g., in the form of the Internet of Things, the deployment and continuous application of models become more and more an important issue. Therefore, small models that offer good predictive performance and use small amounts of memory are required. Ensemble pruning is a standard technique for removing unnecessary classifiers from a large ensemble that reduces the overall resource consumption and sometimes improves the performance of the original ensemble. Similarly, leaf-refinement is a technique that improves the performance of a tree ensemble by jointly re-learning the probability estimates in the leaf nodes of the trees, thereby allowing for smaller ensembles while preserving their predictive performance.
Description: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s10618-023-00921-z
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8321
Appears in Collections
OER - Công nghệ thông tin
ABSTRACTS VIEWS

38

FULLTEXT VIEWS

22

Files in This Item:

Thumbnail
  • Joint leaf-refinement and ensemble pruning through L1-2023.pdf
      Restricted Access
    • Size : 3,37 MB

    • Format : Adobe PDF