Thông tin tài liệu
Nhan đề : |
Modelling biochemical oxygen demand using improved neuro-fuzzy approach by marine predators algorithm |
Tác giả : |
Adnan, Rana Muhammad Dai, Hong-Liang Kisi, Ozgur |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
Biochemical oxygen demand (BOD) is one of the most important parameters used for water quality assessment. Alternative methods are essential for accurately prediction of this parameter because the traditional method in predicting the BOD is time-consuming and it is inaccurate due to inconstancies in microbial multiplicity. In this study, the applicability of four hybrid neuro-fuzzy (ANFIS) methods, ANFIS with genetic algorithm (GA), ANFIS with particle swarm optimization (PSO), ANFIS with sine cosine algorithm (SCA), and ANFIS with marine predators algorithm (MPA), was investigated in predicting BOD using distinct input combinations such as potential of hydrogen (pH), dissolved oxygen (DO), electrical conductivity (EC), water temperature (WT), suspended solids (SS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (T-P) acquired from two river stations, Gongreung and Gyeongan, South Korea. |
Mô tả: |
CC-BY |
URI: |
https://link.springer.com/article/10.1007/s11356-023-28935-6 https://dlib.phenikaa-uni.edu.vn/handle/PNK/8693 |
Bộ sưu tập |
OER - Khoa học môi trường |
XEM MÔ TẢ
15
XEM TOÀN VĂN
12
Danh sách tệp tin đính kèm: